Sample-efficient Deep Reinforcement Learning for Dialog Control

نویسندگان

  • Kavosh Asadi
  • Jason D. Williams
چکیده

Representing a dialog policy as a recurrent neural network (RNN) is attractive because it handles partial observability, infers a latent representation of state, and can be optimized with supervised learning (SL) or reinforcement learning (RL). For RL, a policy gradient approach is natural, but is sample inefficient. In this paper, we present 3 methods for reducing the number of dialogs required to optimize an RNN-based dialog policy with RL. The key idea is to maintain a second RNN which predicts the value of the current policy, and to apply experience replay to both networks. On two tasks, these methods reduce the number of dialogs/episodes required by about a third, vs. standard policy gradient methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample Efficient Deep Reinforcement Learning for Dialogue Systems with Large Action Spaces

In Statistical Dialogue Systems, we aim to deploy Artificial Intelligence to build automated dialogue agents that can converse with humans. A part of this effort is the policy optimisation task, which attempts to find a policy describing how to respond to humans, in the form of a function taking the current state of the dialogue and returning the response of the system. In this project, we inve...

متن کامل

Sample-efficient Actor-Critic Reinforcement Learning with Supervised Data for Dialogue Management

Deep reinforcement learning (RL) methods have significant potential for dialogue policy optimisation. However, they suffer from a poor performance in the early stages of learning. This is especially problematic for on-line learning with real users. Two approaches are introduced to tackle this problem. Firstly, to speed up the learning process, two sampleefficient neural networks algorithms: tru...

متن کامل

Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning

This paper presents an end-to-end framework for task-oriented dialog systems using a variant of Deep Recurrent QNetworks (DRQN). The model is able to interface with a relational database and jointly learn policies for both language understanding and dialog strategy. Moreover, we propose a hybrid algorithm that combines the strength of reinforcement learning and supervised learning to achieve fa...

متن کامل

Batch Reinforcement Learning for Spoken Dialogue Systems with Sparse Value Function Approximation

In this paper, we propose to combine sample-efficient generalization frameworks for RL with a feature selection algorithm for the learning of an optimal spoken dialogue system (SDS) strategy.

متن کامل

Sample Efficient On-Line Learning of Optimal Dialogue Policies with Kalman Temporal Differences

Designing dialog policies for voice-enabled interfaces is a tailoring job that is most often left to natural language processing experts. This job is generally redone for every new dialog task because cross-domain transfer is not possible. For this reason, machine learning methods for dialog policy optimization have been investigated during the last 15 years. Especially, reinforcement learning ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.06000  شماره 

صفحات  -

تاریخ انتشار 2016